\qquad
SUBJECT: \qquad
WORKSHEET : 10

DATE : \qquad
CHAPTERS :... 141 AND 15 OSCILLATIONS \& WAVES

SECTION-A CONCEPTUAL \& APPLICATION TYPE QUESTIONS

1 list any two characteristics of simple harmonic motion
2 On what factors does the energy of a harmonic oscillator depends ?
3 A simple pendulum is inside a space-craft. What should be its time period of vibration?
$4 \quad$ What is the main difference between forced oscillations \& resonance?
Glass windows may be broken by a far away explosion. Explain why.

6 Name two important properties of a material responsible for the propagation of waves through it .

7 If the pressure of a gas at constant temperature is increased four times, how the velocity of sound in the gas will be affected?

8 What are harmonics?
$9 \quad$ What is beat frequency?
10 What is Doppler effect in sound?

SECTION-B NUMERICAL QUESTIONS

1 The acceleration of a particle performing S.H.M. is $12 \mathrm{c} / \mathrm{m}^{2}$ at a distance of 3 cm from the mean position. Calculate its time-period.

2 The displacement equation for a particle executing simple harmonic motion is $y=0.2 \sin 50 \pi(t+0.01)$ metre, where y is the displacement at the instant t.
Calculate the amplitude, time period, maximum velocity and the displacement at the start of motion.

A block whose mass is 1 kg is fastened to a spring The spring has a spring constant of $50 \mathrm{~N} / \mathrm{m}$. The block is pulled to a distance $\mathrm{x}=10 \mathrm{~cm}$ from its equilibrium position at $\mathrm{x}=0$
on a frictionless surface from rest at $t=0$. Calculate kinetic, potential \& total energies of the block when it is 5 cm away from mean position.

A simple harmonic wave is expressed by equation, $y=7 \times 10^{-6} \sin (800 \pi t-\pi x / 42.5)$ where $y \& x$ are in $\mathrm{cm} \& \mathrm{t}$ in seconds. Calculate the following : (i) amplitude(ii) frequency (iii) wave length (iv) wave velocity, \& (v) phase difference between two particles separated by 17.0 cm .

A metal wire of linear mass density of $9.8 \mathrm{~g} / \mathrm{m}$ is stretched with a tension of 10 kgwt into between two rigid supports 1 m apart. The wire passes at its middle point between the poles of a permanent magnet \& it vibrates in resonance, when carrying an alternating current of frequency v. Find the frequency of the alternating source.

A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430 Hz source? Will this same source be in resonance with the pipe if both ends are open ? Speed of sound $=340 \mathrm{~m} / \mathrm{s}$.

A tuning fork arrangement (pair) produces 4 beats/s with one fork of frequency 288 cps. A little wax is placed on the unknown fork and it sounded again then produces 2 beats $/ \mathrm{s}$. What is the frequency of the unknown fork?

A railway engine \& a car are moving on parallel tracks in opposite directions with speed of 144 kmph 72 kmph , respectively. The engine is continuously sounding a whistle of frequency 500 Hz . The velocity of sound is $340 \mathrm{~m} / \mathrm{s}$. Calculates the frequency of sound heard in the car when (i) the car \& the engine are approaching each other, (ii) the two are moving away from each other.

